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Motion of compactonlike kinks

P. Tchofo Dinda, T. C. Kofane,* and M. Remoissenet
Laboratoire de Physique, Universite´ de Bourgogne, 9 Avenue Alain Savary, Boıˆk Postale 47870, 21078 Dijon, France

~Received 5 August 1999!

We analyze the ability of a compactonlike kink~i.e., kink with compact support! to execute a stable ballistic
propagation in a discrete Klein-Gordon system with anharmonic coupling. We demonstrate that the effects of
lattice discreteness, and the presence of a linear coupling between lattice sites, are detrimental to a stable
ballistic propagation of the compacton, because of the particular structure of the small-oscillation frequency
spectrum of the compacton in which the lower-frequency internal modes enter in direct resonance with phonon
modes. Our study reveals the parameter regions for obtaining a stable ballistic propagation of a compactonlike
kink. Finally we investigate the interactions between compactonlike kinks.@S1063-651X~99!14412-X#

PACS number~s!: 41.20.Jb, 46.40.2f, 02.30.Jr
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I. INTRODUCTION

Many nonlinear lattice models give rise to energy loc
ization effects—and hence support stable kink structu
such as the sine-Gordon@1,2#, the double sine-Gordon@3#, or
the F-four @4# lattices. These lattice models consist of ha
monically coupled particles submitted to an on-site subst
potential which possesses several degenerate minima.
spatial degeneracy, associated with the linear coupling
tween lattice sites, leads to a kink structure with infin
wings, which causes mutual interactions between adja
kinks. On the other hand, Rosenau and Hyman@5#, who in-
vestigated a special type of Korteweg–de Vries equatio
discovered that solitary waves may compactify in the pr
ence of a nonlinear dispersion. Such solitary waves, wh
are characterized by a compact support, i.e., the absenc
infinite tail, have been calledcompactons. Subsequently,
Kivshar @6# reported that intrinsic localized modes in pure
anharmonic lattices may exhibit compactonlike properti
Recently, Dusuelet al. @7# demonstrated that the same ph
nomenology can also appear in nonlinear Klein-Gordon s
tems with anharmonic coupling, then obtained the exp
mental evidence of the existence of a static compacton
real physical system, made up by identical pendulums c
nected by springs. Very recently, dark compacton soluti
have been found in a model of Frenkel excitons@8#. In gen-
eral, one of the lines of current research focuses on the
erating conditions for generating compactonlike structure
real physical systems in which the compacton’s proper
could ensure practical applications. In this context, an und
standing of the dynamical properties of those compacton
essential in gaining some insight into the operating con
tions in which real physical systems can support such c
pact structures. In fact, since the pioneering work of Rose
and Hyman@5,9#, there are many problems which are ch
lenging and interesting, which have not been sufficiently
derstood theoretically. In this respect, a fundamental qu
tion arises@7# as to whether a compactonlike kink~CK! is
able to execute a stable ballistic propagation in nonlin

*Permanent address: Universite´ de Yaounde´ I, Departement de
Physique, BP 812, Yaounde´, Cameroon.
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Klein-Gordon systems. Indeed, Dusuelet al. @7# reported
that a CK, when moving in the continuum lattice, execute
phonon radiation process which ends up by damping its m
tion. Now, it is well known that the phonon radiation pro
duced by classical kink structures is quite negligible in
continuum lattice, as well as the radiative reaction on
kink’s dynamics.

In this paper we resolve this contradiction by treating
trinsically the lattice discreteness without approximation, a
we show that most of the dynamical properties of a CK
atypical and do not fit into the general picture that descri
behavior found in classical field theories. In particular w
elucidate the dynamical mechanism which gives rise to
spontaneous emission of phonon radiation from a continu
CK, and point out the radiative reaction on the CK dynami
Our study reveals the parameter regions for obtaining
stable ballistic propagation, and the essential features of
interaction between compactons.

In the following section we define theF-four model un-
der consideration and in Sec. II B we examine the freque
spectrum of the system. Section III is devoted to an exa
nation of discreteness effects on a CK. In Sec. IV we p
form the molecular dynamics simulation of the ballist
propagation of a CK, and examine the interaction betwe
compactons. We conclude in Sec. V.

II. STATIC AND DYNAMICS PROPERTIES

A. The model

The system under consideration is aF-four lattice with
linear and nonlinear coupling between lattice sites, gover
by the following Hamiltonian:

H5(
n

1

2
Q̇n

21
1

2
Cl~Qn2Qn21!21

1

4
Cnl~Qn2Qn21!4

1
1

8
v0

2V~Qn!, ~1!

whereQn is the position of thenth particle measured from
thenth lattice site,Cl andCnl are parameters that control th
strength of the linear and nonlinear coupling, the dot in
cates the time derivative,v0 is the limiting frequency for
7525 © 1999 The American Physical Society
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long wavelength excitations. In the present work, we ta
v052&, to facilitate the comparison of our results wi
previous work@7#. In Eq. ~1!, V(Qn)[(12Qn

2)2 is the on-
site potential. Thepotential energyof the system is defined
by

Ep5(
n

1

2
Cl~Qn2Qn21!21

1

4
Cnl~Qn2Qn21!4

1
1

8
v0

2V~Qn!. ~2!

The equation of motion for the system is

Q̈n5Cl~Qn111Qn2122Qn!1Cnl@~Qn112Qn!3

1~Qn212Qn!3#1
1

2
v0

2~Qn2Qn
3!. ~3!

Note that forv0
2!Cl , or v0

2!Cnl , one approaches the con
tinuum limit, in which Qn varies slowly from one site to
another. Using the continuum limit approximations, Eq.~3!
can be reduced to a partial differential equation that adm
for Cnl50, the well-knownF-four kink solution@10#

f~x!5tanh@bK~x2X!#, bK[@v0
2/~4Cl !#

1/2, ~4!

whereas forCl50, one obtains the following compactonlik
kink solution ~kink with compact support! @7#:

H f ~x!56sin@bC~x2X!# for ux2Xu<j5p/~2bC!,
f ~x!561 for ux2Xu.j, bC[@v0

2/~6Cnl!#
1/4.

~5!

In Eqs.~4!,~5!, the site indexn is replaced by the continuou
position variablex ~the lattice spacing being assumed to
equal to 1!, X locates the c.m.~center of mass! of the system.
Whereas a standard kink possesses exponential~infinite!
wings @see Eq.~4!#, the full width of the CK is strictly lim-
ited to @see Eq.~5!#

LC5p/bC5p@6Cnl /v0
2#1/4. ~6!

This implies that, in principle, a compacton and an antico
pacton will not interact unless they come into contact in
way similar to the contact between two hard spheres. Fig
1~a! shows plots of the exact profileQn of the static CK
~solid curve! for LC550 andLC5500. Note that the discret
solution Qn is obtained through a relaxation process@1,2#.
We accomplish the relaxation by, first, putting the continu
CK in the discrete lattice so that the center of the CK
located on a particle near the middle of the chain. Th
using molecular dynamics, one extracts energy from the
tem to relax the chain by periodically setting the velocities
all the particles to zero after a specified number of time ste
The dotted curves in Fig. 1~a! show the profiles of the dis
crete F-four kinks having the same slope as those of
CK’s under consideration (bC5bK). One can clearly iden-
tify in Fig. 1~a! the exponential wings of the kink, in com
parison with the strictly limited wings of the CK. Furthe
more, one can easily measure the correctness of
analytical continuum solution~5! by evaluating the static
e
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-
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,
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dressing of the continuum CK,qn5Qn2 f n , wheref n is the
continuum solution evaluated at discrete lattice points. T
measures of the correctness off n are the maximum value o
the static dressingg5max(uqnu), and the deviationj5Sqn

2.
Figures 1~b!–1~c! show the results obtained for 25<LC
<510. For example, forLC550, g andj do not exceed 1.6
31024 and 531023, respectively. Moreover, bothg andj
decrease monotonically to zero asLC increases. This de
crease implies that the solutionf n provides a highly accurate
representation of the discrete CK solutionQn for a suffi-
ciently large CK ~or equivalently, for a sufficiently large
nonlinear couplingCnl), and coincide exactly withQn in the
continuum limit.

On the other hand, Dusuelet al. @7# reported that a CK
can execute a stable ballistic propagation in a continu
lattice, but with a single velocityV5ACl , implying that the
presence of harmonic coupling forces between the lat
sites (ClÞ0) is required for a CK to propagate. We wi
show below that, contrary to this continuum theory@7#, the
discretized field theory predicts the existence of a transla
mode for a CK, at any nonrelativistic velocity. In fact, mo
of the dynamical properties of a CK are readily understo

FIG. 1. ~a! Plot showing the static profile of the compactonlik
kink (Cl50) for LC550 andLC5500 in a discrete lattice of 1000
particles. The CK is located atX5500. The solid curve represent
the exact discrete CK solution (Cl50). The dashed curve repre
sents the discreteF-four kinks (Cnl50) having the same slope
(bC5bK) as of those of the compactons under consideration.~b!
Maximum value of the static dressingg5max(uqnu) as a function of
the compacton widthLC . ~c! Value of the deviationj5Sqn

2 as a
function of LC .
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PRE 60 7527MOTION OF COMPACTONLIKE KINKS
by looking into the structure of the small-oscillation fr
quency spectrum of the system.

B. Frequency spectrum of the system

Some fundamental features of classical kink’s dynam
are recalled in Figs. 2~a! and 2~b!, that we obtained by per
forming a Fourier transform of Eq.~3! ~with Cnl50), in
which the initial condition of the dynamics was the discre
static solutionQn and a weak noise on each particle of t
lattice. As Figs. 2~a!, 2~b! show, the frequency spectrum of
kink consists of a phonon band v5v0@1
1(4Cl /v0

2)sin2(k/2)#1/2, 0<k<p, which depends onCl

and exists whether the kink is present or not in the latti
When the kink is present in the lattice, one or several ad
tional frequencies known as collective modes appear in
spectrum, below the lower-phonon band edgev,v0 . A
well known example of collective mode is the c.m. mode.
the continuum system, the c.m. mode is the zero-freque
Goldstone modevX50 @see Fig. 2~a!#, which corresponds to
a particlelike translation of the kink. In the discrete syste
the c.m. mode becomes a finite-frequency mode assoc
with oscillations of the kink in the Peierls-Nabarro~PN! po-
tential @see Fig. 2~b!#; this frequency is known as the P
frequency. Now, Fig. 2~c!, which shows the spectrum tha
we obtained forCl50, reveals one of the main results of th

FIG. 2. ~a!–~d! show the temporal Fourier transform of th
small amplitude motion of a compactonlike kink in a 50 partic
chain.~e! and~f! show the spectra obtained from the linear opera
L, Eq. ~12!. The solid curve in~e! corresponds to the c.m. mod
vX /v, Eq. ~10!.
s

.
i-
e

cy

,
ed

present research, that is, the fact thata CK possesses a zero
frequency Goldstone mode for sufficiently large Cnl , which
indicates that in the limit of no perturbations a CK can e
ecute a stable ballistic motion at any nonrelativistic veloci
We attribute the failure of the continuum field theory@7# for
predicting this translation mode of a CK to the fact that so
self-consistency conditions of the continuum limit appro
mations ~CLA’s! are not fully satisfied by the continuum
solution f (x) given by Eq.~5!. Indeed in standard CLA’s one
expands the discrete finite differencesQn612Qn in Taylor
series and keeps only the leading terms~for obtaining the
continuum solution of the equation of motion!, by assuming
that the higher-order terms of the expansion are negligi
The continuum solution hence obtainedf (x) must therefore
be self-consistent with the assumption just mentioned. N
the higher-order derivatives off (x), Eq. ~5!, contain the
Dirac d function or its derivativesd8,d9, . . . , at theedges of
the CK, which yield non-negligible contributions for term
which have been neglected in the CLA’s, hence the failure
the continuum field theory. Nevertheless, the solutionf (x)
provides the exact representation of the shape of a static

In addition to the c.m. mode, the kink can execute inter
vibrations that are commonly referred to as the inter
modes. The most common internal mode that kinks poss
is that corresponding to an oscillation of the kink wid
about an equilibrium value. This internal mode is known
theshapemode of the kink. In Figs. 2~a! and 2~b! one clearly
identifies the shape mode of theF-four kink, just below the
lower phonon band edge. Although theF-four kink pos-
sesses only one internal mode, the number of internal mo
in classical kink-bearing systems may increase with
bound as a function of the anharmonicity of the substr
potential@11#, but the fundamental feature of these intern
modes is that they always appear in the gap below the low
phonon band edge:v,v0 . Quite in contrast, we observe i
Fig. 2~c! the surprising result that the nonlinear couplingCnl
induces, within a CK, a large number of internal modes t
are all located above the characteristic frequencyv0 :
v.v0 . Furthermore, Fig. 2~d! shows that the linear cou
pling induces two fundamental features in the spectrum: fi
an internal mode just belowv0 , and second, a phonon ban
above v0 , whose size increases asCl increases. Conse
quently, if the phonon band is sufficiently large, some int
nal modes of the CK will appear in the phonon band a
make direct resonance with phonons, thus producing a c
tinuous stream of phonons. Such a radiative process dif
drastically from the behavior found in classical kink-beari
systems, in which the fundamental frequency of the kin
motion always like outside the phonon band, and there,
phonon-radiation mechanism results from the resonanc
the harmonics of this frequency with the phonon mod
@1–3,10#. Furthermore, it should also be emphasized that
number of internal modes of a CK increases without bou
asCnl increases@see Fig. 2~e!#, thereby increasing the num
ber of internal modes that fall in the phonon band whenCl
Þ0 @see Fig. 2~f!#. Thus, the mechanism of direct resonan
with phonons, which causes radiation of energy away from
CK even for small-amplitude dynamics, alters unavoida
the fundamental properties of the CK~e.g., its compact sup
port!. Furthermore, a CK is subject to other effects, such

r
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discreteness effects, that may alter its dynamical proper
as we discuss below.

III. DISCRETENESS EFFECTS
IN A CK BEARING SYSTEM

A simple way to analyze the effects of lattice discreten
on the dynamics of a CK is an examination of the frequen
of the c.m. mode, whose value generally serves as a mea
of whether a system will exhibitdiscreteor continuumbe-
havior. To this end, we use a collective variable theory
order to calculate a lowest-order expression for the freque
with which a CK executes a trapped oscillatory motion
small amplitude in the PN well, that is, we decompose
field Qn in the following way:

Qn5 f n1qn , H f n~X!56sin@a~n2X!# for un2Xu<j
f n~X!561 for un2Xu.j ,

~7!

wheref n is the continuum CK solution, Eq.~5!, evaluated at
discrete lattice points. Note that one must add the termqn in
Eq. ~7! in order to account for the dressing of the continuu
CK. Notice also that we consider here the case whereCl
50, in which the ansatz functionf n provides a best repre
sentation of the CK profile. Then, using a projection-opera
approach@12#, that is, substituting the ansatz Eq.~7! into the
discrete equation of motion~3! and projecting the resulting
equation in the direction̂f n,Xu yields the following equation
of motion for the collective variableX:

Ẍ5
1

M2^ f n,XXuqn&
F Ẋ2~^ f n,XXXuqn&2^ f n,Xu f n,XX&!

12Ẋ^ f n,XXuq̇n&1Cnl^ f n,XuD4~ f n1qn!&

2
v0

2

8
^ f n,XuV8~ f n1qn!&G ,

D4hn[~hn112hn!31~hn212hn!3, ~8!

whereX after a comma stands for partial differentiation wi
respect toX, the bracket notation means sum over the p
ticle index, andM[^ f n,Xu f n,X& is the compacton mass. The
settingqn50 for all n ~the approximation of settingqn50 is
called the ‘‘bare approximation’’!, and neglecting the sma
terms of orderẊ2, Eq. ~8! becomes

Ẍ5
1

M FCnl^ f n,XuD4~ f n!&2
v0

2

8
^ f n,XuV8~ f n!&G . ~9!

By decomposingX as int(X)1R, where int(X) represents
the integral part ofX, then settingR5h or R5 1

2 1h ~de-
pending on whether the stable equilibrium position of t
c.m. is located on a lattice site or midway between two
jacent sites! and linearizing inh, Eq. ~9! becomesḧ5
2vX

2h, where
s,

s
y
ure

cy
f
e

r

r-

-

vX
25

a

M FCnlH 1

4
H1~2a!2

1

2
H1~a!

1S 2
3

2
13 cosa2cos3 a DH2~a!

1S 2
3

4
1

3

2
cos2 a2cos3 a DH2~2a!

1S 2
9

4
1

3

2
cosa2

1

2
cos3 a DD1~a!

1S 2
3

8
1

3

4
cos2 a2

1

2
cos3 a DD1~2a!2

7

4
D2~a/2!

1
sin3 a

2
D2~a!1

3

4
D2~3a/2!1S 3

8
sin~2a!2

3

4
sina

1
1

2
sin3 a DD2~2a!J 1

v0
2

8 H H1~a!1
1

2
H1~2a!J G ,

~10a!

H1~z![
22z sin~zN!

sin~z!
, H2~z![

22z sin@z~N22!#

sin~z!
,

D1~z![24z cos@z~N21!#,

D2~z![24z sin@z~N21!#, M5
a2

2 FN1
sin~aN!

sin~a! G ,
N5 int~j1R!1 int~j2R!11. ~10b!

We can check the accuracy of our lowest-order express
for vX , Eq. ~10!, by performing numerically the exact dete
mination of the small-oscillation spectrum of the system
the presence of a stable CKcn ~that we obtained via a clas
sical pseudodynamics relaxation process!. That is, we con-
sider Qn(t)5cn(Xeq)1eln(Xeq)exp(2ivt), where e is a
small parameter. The linearization of the discrete equation
motion, Eq. ~3!, about cn yields the following eigenvalue
equation:

L@ln#5v2@ln#, ~11!

where@ln# is an eigenvector, the nonzero components of
linear matrix operatorL are

L~ i ,i 61!52Cl23Cnl~c i 612c i !
2, ~12a!

L~ i ,i !52Cl13Cnl@~c i 112c i !
21~c i 212c i !

2#

2
v0

2

2
~123c i

2!, ~12b!

L~1,1!5Cl13Cnl~c22c1!22
v0

2

2
~123c1

2!,

L~1,2!52Cl23Cnl~c22c1!2, ~12c!

L~N,N21!52Cl23Cnl~cN212cN!2,
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L~N,N!5Cl13Cnl~cN212cN!22
v0

2

2
~123cN

2 !.

~12d!

Figure 2~e! shows the variations ofvX ~solid curve! together
with the exact determination of the c.m. frequencyvX exact
obtained via the linear operatorL ~dotted curve!. We observe
that for smallCnl , the system exhibits adiscretebehavior, in
which the c.m. frequency is not zero, and decreases stro
as Cnl increases. WhenCnl is sufficiently large, the c.m
mode becomes the zero-frequency Goldstone mode. Fur
more, quantitatively, the value ofvX agrees more or les
well with vX exact depending on the value ofCnl . But the
general qualitative agreement is excellent. Thus, the ab
results show that discreteness effects become significan
Cnl,10. These effects can therefore be avoided by usin
sufficiently large nonlinear coupling, for obtaining the u
trapped regime of a CK, that we consider below.

IV. BALLISTIC PROPAGATION AND INTERACTIONS
BETWEEN COMPACTONS

A. Ballistic propagation

As discussed in the preceding section, one of the m
results of the present work is the demonstration that a
possesses a zero-frequency Goldstone mode for sufficie
largeCnl @see Fig. 2~c!#; which indicates that a CK can ex
ecute a stable ballistic motion at any nonrelativistic veloc
To observe this propagation regime, we have performed
merical simulations of Eq.~3!, for Cnl514500,Cl5208, and
Cl50, respectively. Our simulations start with a CK locat
at the middle of a 3000 particle chain, with initial veloci
V0[Ẋ(t50).0, which induces the following particle ve
locities: Q̇n5V0f n,X1q̇n(0), that we have approximated b
Q̇n5V0f n,X , as we do not have theq̇n~0!’s. Although this
approximation is valid when discreteness effects are ne
gible, such an initial condition acts as a source of pertur
tions which excites the whole frequency spectrum. Figure
show the lattice profile after the CK has traveled over 11
lattice spacings. As can be seen in Fig. 3~a!, when Cl
5208, a strong phonon radiation occurs in the backw
direction of the moving CK, due to direct resonance of t
internal modes of the compacton with phonon modes, as
mentioned above. This radiative process alters the com
support of the CK and causes a small decrease of its velo
When Cl50 the phonons are created at frequencyv0 , but
these phonons cannot propagate owing to their zero gr
velocity @see Fig. 3~b!#. For largeV0 andCl50, the effects
of the initial perturbations are significantly enhanced, wh
causes a continual decrease of the velocityẊ(t). But we see
in Figs. 3~c!, 3~d!, 3~e!, and 3~f! that for a small velocityV0 ,
the perturbations induced by the launching conditions
significantly reduced, as well as the resulting radiative p
cess. Nevertheless, the Poynting flux evaluated at the sn
51000 shows that although the radiation is small it is n
zero forClÞ0 @see Fig. 3~e!#. Note that the discrete defini
tion of the Poynting fluxS is @2#

S~n,t !5@Qn11~ t !2Qn~ t !#
Qn~ t1Dt !2Qn~ t !

Dt
. ~13!
ly

er-

ve
for
a

in
K
tly

.
u-

li-
-
3
0

d
e
e
ct

ty.

up

h

e
-

t

For Cl50, the whole phonon packet reduces to stand
waves at frequencyv0 . Consequently the sites located f
away from the CK are not perturbed by the CK motion wh
Cl50 @see Fig. 3~f!#.

B. Interactions between compactonlike kinks

The problem of interactions between CK’s was brie
examined by Dusuelet al. @7#, who reported that the head-o
collision between compactons traveling at a specific veloc
is inelastic, leading to kinks after the collision. This res
means that the two colliding CK’s can survive a collisio
through a conversion into standard kink structures@7#. In
fact, by carefully analyzing the collision process, we sh
below that CK’s do not survive a head-on collision whatev
are their incoming velocities, in contrast to standard kin
which are known to survive collisions in some ranges
incoming velocities. In this context, it is worth recalling th
the interaction between standard kinks have been intensi
investigated@13–17#. It was reported in most of these studie
that there exist some ranges of initial kink velocities f
which the collisions end in reflection, and that these refl

FIG. 3. ~a!–~d! show the profile of compactonlike kink afte
traveling on 1100 lattice sites, forCnl514500. The dashed curve
show the initial kink profile. Simulation parameters are~a! Cl

5208, X(t50)51500, V05Ẋ(t50)5A208. ~b! Cl50, X(t50)
51500.5, V05A208. ~c! Cl5208, X(t50)51500, V050.5. ~d!
Cl50, X(t50)51500.5,V050.5. ~e! and ~f! show the instanta-
neous Poynting flux evaluated at siten51000, during the dynamics
in ~c! and ~d!, respectively.
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tion regions alternate with regions of incoming velocities
which the collisions end in a bound pair of kink-antikin
Moreover, an outstanding result of these studies is the d
onstration that the excitation of the internal mode of the k
during the collision~when this mode exists! gives rise to
physical phenomena which determine the type of enti
which emerge from the collision process. For examp
Campbellet al. @13#, who studied kink-antikink collisions in
classical kink-bearing systems, observed from simulati
that there exist some particular ranges of incoming veloci
for which the colliding kinks form a temporary bound pa
after the initial collision. During this first collision, som
energy of translation from each kink is transferred to th
internal modes, the translation energy thereby being redu
sufficiently such that the colliding kinks form a tempora
bound state. While in this bound state, they collide a sec
time, permitting a sufficient amount of energy which h
been transferred to the internal modes to be transferred
to the translation mode of each kink, thus allowing them
become again an unbound pair and separate to infin
Therefore, the question arises as to whether or not the ab
mentioned phenomena may occur in CK-bearing systems
answer this question we have carried out numerical sim
tions of collisions between compactons, which will be p
sented below, by taking an extreme care of the sensitivity
the compacton dynamics to the approximate nature of
initial velocities of the particles~as we already mentioned i
the previous section!. In this respect, it is useful to carefull
monitor a characteristic parameter which can serve as a m
sure of the quality of launching conditions. A simple para
eter~criterion! that can be used is the interaction energy o
pair of CK’s. The interaction energy of two colliding entitie
at a given timetEint , may be defined as the potential ener
of the system timet, measured from the potential energy of
system of two noninteracting compactonsEp0 :

Eint[uEp2Ep0u/Ep0 . ~14!

Thus, if the launching conditions are perfectly controlle
then this interaction energy will remain strictly at zero un
the two CK’s come into contact. On the other hand, as ill
trated in Fig. 4, it is important to make here a clear distin

FIG. 4. Plot illustrating the initial profile of the lattice with
static compacton (LC5500) and an anticompacton (LC5500) be-
fore the beginning of the collision process.
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tion between the distance between the center-of-masse
the two CK’s,X22X1 , and the effective separation distan
which is

Deff5~X22LC/2!2~X11LC/2!5X22X12LC . ~15!

In principle, if X22X1.LC , then two compactons will no
interact. They will begin to interact as soon asX22X1 will
become less or equal toLC ~i.e., as soon asDeff<0). In all
our simulations of collisions between CK’s, the initial pos
tions of the c.m.’s,X1(t50) and X2(t50), were chosen
such thatDeff(0)5200, to facilitate the comparison betwee
different cases. Figures 5~a!, 5~b!, 5~c!, and 5~d! show the
collision process of a CK@with LC550, X1(t50)550, in a
349 particle lattice, and initial velocityV0150.05# and
anti-CK @with LC550, X2(t50)5300, and initial velocity
V02520.05#, represented in solid curves. As Fig. 5~a!
shows, as soon as the two compactons are launched
separation distance between their c.m.’s continually
creases without inducing a change in the interaction ene
@see Fig. 5~b!#, which remains to zero until the timet
52000. At this time, we observe in Fig. 5~a! that X22X1
5LC , thus indicating that the two compactons come in
contact in a way similar to the contact between two ha
spheres@see Fig. 5~c!#. Here lies a fundamental differenc

FIG. 5. Plot showing the collision process of a compacton tr
eling at velocityV0150.05 (LC550) and an anticompacton trave
ing at velocity V0252V01 (LC550). ~a! Time evolution of the
normalized separation distance between the center-of-masses
two compactons.~b! Time evolution of the interaction energy.~c!
System profile at timet52000. ~d! System profile at timet
52078.
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between compactons and standard kinks. The dotted cu
in Figs. 5~a! and 5~b!, which illustrate the interaction of a
pair of F-four kinks having the same slope and same ini
velocities as those of the compactons, demonstrate tha
interaction betweenF-four kinks begins much earlier (t
'1436) than in the case of compactons (t52000). Note that
the value ofCl for which theF-four kink and the CK have
the same slope (bK5bC) is given by

Cl5
v0

4
A6Cnl. ~16!

This F-four collision process ends in a bound state not r
resented in Figs. 5. On the other hand, the collision betw
CK’s also ends in an unstable bound state, in which
newly formed entity executes an unstable breathing mot
which progressively destroys the compact support of the
ergy localization@see Fig. 5~d!#.

To check the behavior of CK’s during collisions, we ha
carried out, in a systematic manner, numerical simulation
a wide range of initial velocities including low and hig
velocities. It comes out from those simulations thatcollisions
between the compactons that travel at low incoming velo
ties always end in a bound state@such as in Figs. 5#. The
main results for high incoming velocities are summarized
Fig. 6. Figures 6~a1!, 6~b1!, 6~c1!, and 6~d1!, which show
the collision process of two compactons with initial veloc
ties610 and the same widthLC550, would indicate that the
collision ends in reflection. This type of collision corre
sponds to the situation that was considered in Ref.@7# and
was referred to as an inelastic collision. In fact, a care
examination of the system’s profile at the very beginning
the collision reveals quite clearly that the two colliding en
ties are not compactons in the strict sense@see Fig. 6~c1!#.
Indeed, a small but non-negligible part of the energy that w
initially strictly localized within the compactons ultimatel
finds itself away from the support of the two compactons
the form of strong noise. The presence of this noise is du
the difficulty of perfectly controlling the launching cond
tions of the compactons, as a result of the approximation
neglecting the effects of the static dressing@ q̇n(0)50# in the
initial velocities on the particles. Consequently, as one st
with highly accurate initial conditions but which are not th
exact solution for the system, the initial conditions behave
a source of noise which is subsequently amplified in tim
However, as we already mentioned in Sec. IV A, the effe
of the static dressing can be minimized by just minimizi
the discreteness effects, or equivalently, by increasing
width of the compacton. Figures 6~a2!, 6~b2!, 6~c2!, and
6~d2!, which show the collision process of two compacto
which are launched with the same initial velocities as in Fi
6~a1!, 6~b1!, 6~c1!, and 6~d1! but with a much larger width,
LC5500, reveal that the collision between compactons w
incoming velocities610 ends in fact in an unstable boun
state. In general, we have found out the fundamental re
that collisions between compactons never end in reflec
for any incoming velocities, including the cases where t
compactons are launched with different velocities, and
case of collisions of compactons with different widths. Th
all the translation energy of compactons is transferred
their internal modes during the collision. To explain this b
es
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havior, one must be aware of the fact that the reflection b
of two colliding entities requires that most of the energy lo
by the c.m. mode in the beginning of the collision is sub
quently restored. In theF-four kink system, in which only a
single internal mode exists, a direct energy exchange pro
occurs between the c.m. mode and the internal mode,
allowing reflection back of the kinks. Now, in the compact
bearing system, there exist a large number of internal mo
which are excited during the collision. Then, the energ
exchange processes occur in one part between the inte
modes, and in the other part between the internal modes
the c.m. mode. In this situation, the reflection back of tw
colliding compactons would require that most of the intern
modes transfer synchronously their energies to the tran
tion mode. It is clear that this requirement is unlikely
occur in a system which possesses a large number of inte
modes with quite different frequencies: hence an unsta
bound state after the collision. On the other hand, it is wo
reemphasizing that compactons can transform into kinks
the presence of strong noise, thus recovering the ability
execute a collision with reflection, as Fig. 6~d1! shows. This

FIG. 6. Plot showing the collision process of a compacton tr
eling at velocityV01510 and an anticompacton traveling at veloci
V0252V01. Time evolution of the normalized separation distan
between the center-of-masses of the two compactons for~a1! LC

550 and~a2! LC5500. Time evolution of the interaction energ
for ~b1! LC550 and~b2! LC5500. System profile at time~c1! t
510 ~dotted curve! and t511.8 ~solid curve! for LC550 and~b2!
at timest510 for LC5500. ~d1! System profile at timet539 for
~c1! LC550 and~d2! LC5500.
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conversion of a part of the compacton’s energy into no
induces a small drop in the compacton’s velocity. Figu
6~c2! shows that in the absence of noise, thebig compactons
(LC5500) come into contact at timet510, at which the
small compactons (LC550) are still clearly separated by ap
proximatelyDeff527 lattice sites@as the dotted curve show
in Fig. 6~c1!#. Thesmall compactons finally come into con
tact after few while after thebig compactons, at timet
511.8 @see the solid curve in Fig. 6~c1!#.

V. CONCLUSION

In conclusion, we have demonstrated that the ballis
propagation of a CK in nonlinear Klein-Gordon systems
subject to three main limiting factors which may alter
fundamental properties. In the regions of small nonlin
coupling, discreteness effects give rise to a PN poten
which provides pinning sites for a CK. On the other hand
linear coupling gives rise to a phonon band which enters
direct resonance with the internal modes of the CK, caus
radiation of energy away from the CK. These two limitin
factors are strongly reduced forCl.0, Cnl@1. The existence
of a Goldstone mode in this parameter region makes poss
a stable ballistic propagation for a CK. The third limitin
B

e
e

c

r
al
a
n
g

le

factor is related to the interactions between compactons:
have shown that in contrast to the pulse compactons in
duced by Rosenau and Hyman@5,9# which survive colli-
sions, our CK’s do not survive a head-on collision whi
ends in an unstable bound state. Despite those limiting
tors, the ability of a CK to execute a stable ballistic prop
gation constitutes a potential advantage as regards app
tions to signal processing. Without being too speculative
suggest that the use of CK’s for data transmission purpo
would offer as main advantage, compared with usual k
structures@18#, the absence of long range interactions b
tween adjacent compactons. This property might be
ploited to increase the capacity of fiber links. In view
these remarkable features we believe that the efforts requ
to generate structures with a compact support in real phys
systems deserve to be carried on.
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