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Motion of compactonlike kinks
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We analyze the ability of a compactonlike kifile., kink with compact supporto execute a stable ballistic
propagation in a discrete Klein-Gordon system with anharmonic coupling. We demonstrate that the effects of
lattice discreteness, and the presence of a linear coupling between lattice sites, are detrimental to a stable
ballistic propagation of the compacton, because of the particular structure of the small-oscillation frequency
spectrum of the compacton in which the lower-frequency internal modes enter in direct resonance with phonon
modes. Our study reveals the parameter regions for obtaining a stable ballistic propagation of a compactonlike
kink. Finally we investigate the interactions between compactonlike k[i8063-651X99)14412-X]

PACS numbgs): 41.20.Jb, 46.406:f, 02.30.Jr

[. INTRODUCTION Klein-Gordon systems. Indeed, Dusuel al. [7] reported
that a CK, when moving in the continuum lattice, executes a
Many nonlinear lattice models give rise to energy local-phonon radiation process which ends up by damping its mo-
ization effects—and hence support stable kink structure§on. Now, it is well known that the phonon radiation pro-
such as the sine-Gorddh,2], the double sine-Gorddi3], or ~ duced by classical kink structures is quite negligible in a
the ®-four [4] lattices. These lattice models consist of har-continuum lattice, as well as the radiative reaction on the
monically coupled particles submitted to an on-site substrat&ink’s dynamics.
potential which possesses several degenerate minima. This In this paper we resolve this contradiction by treating in-
spatial degeneracy, associated with the linear coupling bdtinsically the lattice discreteness without approximation, and
tween lattice sites, leads to a kink structure with infinitewe show that most of the dynamical properties of a CK are
wings, which causes mutual interactions between adjacer@typical and do not fit into the general picture that describes
kinks. On the other hand, Rosenau and Hyrfah who in- behavior found in classical field theories. In particular we
vestigated a special type of Korteweg—de Vries equationsglucidate the dynamical mechanism which gives rise to the
discovered that solitary waves may compactify in the presspontaneous emission of phonon radiation from a continuum
ence of a nonlinear dispersion. Such solitary waves, whicl¢K, and point out the radiative reaction on the CK dynamics.
are characterized by a compact support, i.e., the absence @ur study reveals the parameter regions for obtaining a
infinite tail, have been calledompactons Subsequently, stable ballistic propagation, and the essential features of the
Kivshar[6] reported that intrinsic localized modes in purely interaction between compactons.
anharmonic lattices may exhibit compactonlike properties. In the following section we define th@-four model un-
Recently, Dusueét al. [7] demonstrated that the same phe-der consideration and in Sec. I1B we examine the frequency
nomenology can also appear in nonlinear Klein-Gordon sysspectrum of the system. Section Ill is devoted to an exami-
tems with anharmonic coupling, then obtained the experination of discreteness effects on a CK. In Sec. IV we per-
mental evidence of the existence of a static compacton in #rm the molecular dynamics simulation of the ballistic
real physica| System' made up by identical pendu|ums Corpropagation of a CK, and examine the interaction between
nected by springs. Very recently, dark compacton solution§ompactons. We conclude in Sec. V.
have been found in a model of Frenkel excitd8§ In gen-
eral, one of the lines of current research focuses on the op- Il. STATIC AND DYNAMICS PROPERTIES
erating conditions for generating compactonlike structures in
real physical systems in which the compacton’s properties
could ensure practical applications. In this context, an under- The system under consideration isbafour lattice with
standing of the dynamical properties of those compactons iBnear and nonlinear coupling between lattice sites, governed
essential in gaining some insight into the operating condiby the following Hamiltonian:
tions in which real physical systems can support such com-
pact structures. In fact, since the pioneering work of Rosenau
and Hyman[5,9], there are many problems which are chal-
lenging and interesting, which have not been sufficiently un-
derstood theoretically. In this respect, a fundamental ques- n E 2y )
tion arises[7] as to whether a compactonlike kifkK) is g “o (Qn),
able to execute a stable ballistic propagation in nonlinear
whereQ, is the position of thenth particle measured from
thenth lattice siteC; andC,, are parameters that control the
*Permanent address: Universie Yaoundel, Departement de Strength of the linear and nonlinear coupling, the dot indi-
Physique, BP 812, Yaouhd€ameroon. cates the time derivativay, is the limiting frequency for

A. The model

1. 1 1
H=2 5 Qi+ 5Ci(Qn=Qn 1)+ 7Cn(Qn=Qn-0)*
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long wavelength excitations. In the present work, we take
wo=2v2, to facilitate the comparison of our results with
previous work[7]. In Eq. (1), V(Q,)=(1—Q?)? is the on-
site potential. Theotential energyof the system is defined
by

(@)

1 1
Ep=2 5 Ci(Qu=Qn-0)*+ 7Cn(Qn=Qn-1)*

1 2
+ 5 waV(Qu)- @

The equation of motion for the system is

Qn:CI(Qn-%—l"_Qn—l_2Qn)+Cnl[(Qn-¢—l_Qn)3

1
+(Qn-17Qn)*]+ 5 05(Qu— Q7). (3

Note that foro3<C,, or w3<C,, one approaches the con-
tinuum limit, in which Q,, varies slowly from one site to
another. Using the continuum limit approximations, Eg).

can be reduced to a partial differential equation that admits,
for C,,=0, the well-knownd-four kink solution[10]

d(x)=tan B (x—X)], Bx=[wd/(4CD1¥% (4
100 200L300 400 500 100 200 300 400 500

whereas foiC,=0, one obtains the following compactonlike c Le
kink solution (kink with compact suppoxt 7]

max(lqnl)

. _ FIG. 1. (a) Plot showing the static profile of the compactonlike
f(x)=Zsin Bc(x=X)]  for |X_X|$2§_ 77/(2540)' kink (C;=0) for Lo=50 andL-=500 in a discrete lattice of 1000

f(x)=x1 for [x=X|>¢, Bc=[wp/(6Cy)]" particles. The CK is located &=500. The solid curve represents
) the exact discrete CK solutiorC(=0). The dashed curve repre-

o ) ) sents the discret@-four kinks (C,=0) having the same slope
In Egs.(4),(5), the site index is replaced by the continuous (Be=Bx) as of those of the compactons under consideration.

position variablex (the lattice spacing being assumed to bemaximum value of the static dressing= max(q,|) as a function of

equal to 1, Xlocates the c.m(center of massof the system.  the compacton width.¢ . (c) Value of the deviatiort=3q? as a
Whereas a standard kink possesses exponefitifihite) function of L.

wings[see Eq.(4)], the full width of the CK is strictly lim-
ited to[see Eq.5)]

dressing of the continuum CKy,=Q,—f,, wheref, is the
L o=/ Be=[6C |/w2]l/4. (6) continuum solution evaluated at discrete lattice points. Two
neeo measures of the correctnessfgfare the maximum value of

This implies that, in principle, a compacton and an anticomhe static dressing/=max(g), and the deviatiorE= 3.
pacton will not interact unless they come into contact in aFigures 1b)-1(c) show the results obtained for 23 ¢
way similar to the contact between two hard spheres. Figures510. For example, foL =50, y and ¢ do not exceed 1.6
1(a) shows plots of the exact profil®, of the static CK <10 * and 5103, respectively. Moreover, botl and &
(solid curve for L=50 andL-=500. Note that the discrete decrease monotonically to zero &g increases. This de-
solution Q,, is obtained through a relaxation procdd4s2].  crease implies that the solutidy provides a highly accurate
We accomplish the relaxation by, first, putting the continuumrepresentation of the discrete CK soluti@y, for a suffi-

CK in the discrete lattice so that the center of the CK isciently large CK(or equivalently, for a sufficiently large
located on a particle near the middle of the chain. Thennonlinear couplingC,,), and coincide exactly witk®Q, in the
using molecular dynamics, one extracts energy from the syssontinuum limit.

tem to relax the chain by periodically setting the velocities of On the other hand, Dusuet al. [7] reported that a CK

all the particles to zero after a specified number of time stepg:an execute a stable ballistic propagation in a continuum
The dotted curves in Fig.() show the profiles of the dis- lattice, but with a single velocity/=\/C,, implying that the
crete d-four kinks having the same slope as those of thepresence of harmonic coupling forces between the lattice
CK’s under consideration3-= Bx). One can clearly iden- sites (C,#0) is required for a CK to propagate. We will
tify in Fig. 1(a) the exponential wings of the kink, in com- show below that, contrary to this continuum the¢#, the
parison with the strictly limited wings of the CK. Further- discretized field theory predicts the existence of a translation
more, one can easily measure the correctness of thmode for a CK, at any nonrelativistic velocity. In fact, most
analytical continuum solutiort5) by evaluating the static of the dynamical properties of a CK are readily understood
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present research, that is, the fact ta&iK possesses a zero-

55 (@) C=10 (. ). o =3 ol li ; frequency Goldstone mode for sufficiently largg,Gvhich
5 | 1. }hl;!" !H!!l li%{l: if !i“ indicates that in the limit of no perturbations a CK can ex-
£ 15 |"hm H i ! ]| ! ” """ l" |]| ecute a stable ballistic motion at any nonrelativistic velocity.
3 B i : i We attribute the failure of the continuum field the¢®j for
L ey I predicting this translation mode of a CK to the fact that some
0.5 0.5 self-consistency conditions of the continuum limit approxi-
[ e Y mations (CLA’s) are not fully satisfied by the continuum
(© C-0 G20 @ =  C.-20 solutionf (x) gi\_/en by E_q._(5). I_ndeed in standard_CLA’s one
25 - 25; 1 e expands the discrete finite differend®g-.,—Q,, in Taylor
2r ot series and keeps only the leading terffar obtaining the
S5 15 i continuum solution of the equation of motbprby assumir_lg
i ] INMMANIN - that the nigher-order terms of the expansion are negigibte
The continuum solution hence obtaingk) must therefore
0.5 05 be self-consistent with the assumption just mentioned. Now,
o, o the higher-order derivatives df(x), Eg. (5), contain the
10 20 30 40 50 10 2°|TE3° 40 50 Dirac & function or its derivativesy’,d, . . ., at theedges of
SITE n SITE n the CK, which yield non-negligible contributions for terms
which have been neglected in the CLA’s, hence the failure of
the continuum field theory. Nevertheless, the soluti¢r)
provides the exact representation of the shape of a static CK.
In addition to the c.m. mode, the kink can execute internal
vibrations that are commonly referred to as the internal
modes. The most common internal mode that kinks possess
is that corresponding to an oscillation of the kink width
about an equilibrium value. This internal mode is known as

theshapemode of the kink. In Figs. (@) and Zb) one clearly
i nl identifies the shape mode of tdefour kink, just below the
FIG. 2. (8—(d) show the temporal Fourier transform of the lower phonon band edge. Although tlde-four kink pos-
small amplitude motion of a compactonlike kink in a 50 particle S€sses only one internal mode, the number of internal modes
chain.(e) and(f) show the spectra obtained from the linear operatorin classical kink-bearing systems may increase without
£, Eq. (12). The solid curve in(e) corresponds to the c.m. mode bound as a function of the anharmonicity of the substrate
oyl w, Eq.(10). potential[11], but the fundamental feature of these internal
modes is that they always appear in the gap below the lower-
by looking into the structure of the small-oscillation fre- phonon band edges < w. Quite in contrast, we observe in

guency spectrum of the system. Fig. 2(c) the surprising result that the nonlinear couplitg
induces, within a CK, a large number of internal modes that

are all located above the characteristic frequenay:
w>wq. Furthermore, Fig. @) shows that the linear cou-
Some fundamental features of classical kink’s dynamicsling induces two fundamental features in the spectrum: first,
are recalled in Figs. (@ and 2b), that we obtained by per- an internal mode just below,, and second, a phonon band
forming a Fourier transform of Eq3) (with C,=0), in  above w,, whose size increases & increases. Conse-
which the initial condition of the dynamics was the discretequently, if the phonon band is sufficiently large, some inter-
static solutionQ, and a weak noise on each particle of thenal modes of the CK will appear in the phonon band and
lattice. As Figs. 2a), 2(b) show, the frequency spectrum of a make direct resonance with phonons, thus producing a con-
kink consists of a phonon band w=wo[1l tinuous stream of phonons. Such a radiative process differs
+(4C, /wd)sirP(k/2)]?, 0<k=<m, which depends orC, drastically from the behavior found in classical kink-bearing
and exists whether the kink is present or not in the latticesystems, in which the fundamental frequency of the kink’s
When the kink is present in the lattice, one or several addimotion always like outside the phonon band, and there, the
tional frequencies known as collective modes appear in thephonon-radiation mechanism results from the resonance of
spectrum, below the lower-phonon band edg&w,. A the harmonics of this frequency with the phonon modes
well known example of collective mode is the c.m. mode. In[1-3,10. Furthermore, it should also be emphasized that the
the continuum system, the c.m. mode is the zero-frequencgumber of internal modes of a CK increases without bound
Goldstone moday= 0 [see Fig. 2a)], which corresponds to asC,, increasegsee Fig. 2e)], thereby increasing the num-
a particlelike translation of the kink. In the discrete systember of internal modes that fall in the phonon band win
the c.m. mode becomes a finite-frequency mode associatetlO [see Fig. #)]. Thus, the mechanism of direct resonance
with oscillations of the kink in the Peierls-Nabar@®N) po-  with phonons, which causes radiation of energy away from a
tential [see Fig. 2)]; this frequency is known as the PN CK even for small-amplitude dynamics, alters unavoidably
frequency. Now, Fig. @), which shows the spectrum that the fundamental properties of the GK.g., its compact sup-
we obtained folIC,=0, reveals one of the main results of the port). Furthermore, a CK is subject to other effects, such as

B. Frequency spectrum of the system
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discreteness effects, that may alter its dynamical properties, a 1 1
as we discuss below. wi:ﬁ CnI[ZHl(Za)_ EHl(a)
Ill. DISCRETENESS EFFECTS 3
IN A CK BEARING SYSTEM -3 +3 cosa—cos’ a) Ha(a)
A simple way to analyze the effects of lattice discreteness 3 3
on the dynamics of a CK is an examination of the frequency +| — =+ =cog a—cos a) H,(2a)
of the c.m. mode, whose value generally serves as a measure 4 2
of whether a system will exhibitliscreteor continuumbe- 9 3 1
havior. To this end, we use a collective variable theory in +| - Z+ ECOSa— ECO§ a) Di(a)
order to calculate a lowest-order expression for the frequency
with which a CK executes a trapped oscillatory motion of 3 3 1 7
small amplitude in the PN well, that is, we decompose the tl gt ZCO§ a— §C0§ a|D1(2a) = 4 Dy(al2)
field Q,, in the following way:
sin3ozD 3D 302 (3 i 3 .
f.(X)==sifa(n-X)] for [n—X|=<& * 7 Dal@)* g Da3al2) 4| gsinza) = g sine
=Tt an: |t x)==1 for |n—X|>¢, L 2 L
(7 +§sin3a>D2(2a) +§O{Hl(a)+§Hl(2a)] ,
wheref , is the continuum CK solution, E@5), evaluated at (109
discrete lattice points. Note that one must add the tgyrim . .
Eq. (7) in order to account for the dressing of the continuum | (2)= —2zsin(zN) Ha(2)= —2zsiMz(N-2)]
CK. Notice also that we consider here the case wh@&re . sin(z) ' 2 sin(z) '
=0, in which the ansatz functiofi, provides a best repre-
sentation of the CK profile. Then, using a projection-operator D,(z)=—4zcogz(N—-1)],
approach 12], that is, substituting the ansatz Ed@) into the
discrete equation of motio(8) and projecting the resulting _ a? sin(aN)
equation in the directiofif , x| yields the following equation Da(z)=—4zsinz(N-1)], M=—|N+ Sina) |
of motion for the collective variabl:
N=int(é+R)+int(é—R)+ 1. (10b)

X X2({F Ay = (Foxl Frxx)

~ 1
M- <fn,XX|qn>
+ 2X<fn,xx|Qn> + Cnl<fn,X|A4(fn+ qn)>

We can check the accuracy of our lowest-order expression
for wy, Eq.(10), by performing numerically the exact deter-
mination of the small-oscillation spectrum of the system in
the presence of a stable Gk, (that we obtained via a clas-
sical pseudodynamics relaxation progesghat is, we con-

sider Qp(t) = ¥n(Xeg) + €Nn(Xeg)€Xp(—iwt), where € is a
small parameter. The linearization of the discrete equation of
motion, Eq.(3), abouty, yields the following eigenvalue
equation:

w3 ,
- ?(fn,x|v (fn+Qn)> y

A4hnE(hn+1_hn)a‘l'(hn—l_hn)si (8)

Anl= @[ \,], 11
whereX after a comma stands for partial differentiation with Elxa] = An] D

respect toX, the bracket notation means sum over the paryhere ) ] is an eigenvector, the nonzero components of the
ticle index, andM=(f,, x| f, x) is the compacton mass. Then |inear matrix operator. are

settingqg,= 0 for all n (the approximation of setting,,=0 is
called the “bare approximation); and neglecting the small

terms of orderx?, Eq. (8) becomes

L(i,i*1)=—C=3Cn(¢his1— )3 (123

L(i,1)=2C+3C[ (i+1— )+ (hi—1— )]
2 2

.1 o , Wo 2
=l eniTnxlRalTn))— 5 \Inx n/ |- ——((1- <),
X= 17| CrlfaxlAa(fn)) = g (FoxlV' (fr) 9 > (1-3y7) (12b)
2

By decomposingX as int(X) + R, where intX) represents —C 4+ 2 %o . Lo
the integral part ofX, then settingR= 7 or R=1%+ # (de- LLD=Cit3Cn(y— )"~ 5 (1=393),
pending on whether the stable equilibrium position of the
c.m. is located on a lattice site or midway between two ad- £(1,2=—C,—3Cp(1— h1)?, (129

jacent sites and linearizing in%, Eq. (9) becomes?n=

— w}7n, where L(N,N—1)=—C;—3C(n-1— )2,
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2

“o _ ~ iR — ~ 72
L£(N,N)=Cy+3Cn(- 1= )= 5 (1341, (| @ Cron YononT] - |0) G0 eeonT
(120 r
Figure Ze) shows the variations aby (solid curve together o 0 0
with the exact determination of the c.m. frequengy qoyact
obtained via the linear operatdr(dotted curvé We observe
that for smallC,,, the system exhibits discretebehavior, in -1 -1
which the c.m. frequency |s_not zero, and decreases strongl () Cl208 V05 @ G0 V05
as C,, increases. WherC,, is sufficiently large, the c.m. 1 ! 0 — 1 ! 0 —
mode becomes the zero-frequency Goldstone mode. Furthe
more, quantitatively, the value aby agrees more or less -
well with wy oyact depending on the value dt,,. But the g o 0
general qualitative agreement is excellent. Thus, the abowv
results show that discreteness effects become significant fc
Cn<10. These effects can therefore be avoided by using ¢ -1 -1
sufficiently large nonlinear coupling, for obtaining the un- 1000 2000 3000 1000 2000 3000
trapped regime of a CK, that we consider below. SITE n SITE n
x 1078 x 1078
IV. BALLISTIC PROPAGATION AND INTERACTIONS 4 (€) C=208 V=05 | 1 (f) Cg0 V=05
BETWEEN COMPACTONS 2 2
»
A. Ballistic propagation < 2 g
. . . . . 9 -
As discussed in the preceding section, one of the mair Z _4 _4
results of the present work is the demonstration that a CK -6 -6
possesses a zero-frequency Goldstone mode for sufficientl -8 -8
large Cy, [see Fig. .20.)]; Wh'.Ch indicates that a CK can ex- 500 1000 1500 500 1000 1500 2000
ecute a stable ballistic motion at any nonrelativistic velocity. TIME t [arb. units] TIME t [arb. units]

To observe this propagation regime, we have performed nu

merical simulations of Eq3), for C,,=14500,C,= 208, and

C,=0, respectively. Our simulations start with a CK located FIG. 3. (8—(d) show the profile of compactonlike kink after
at the middle of a 3000 particle chain, with initial velocity traveling on 1100 lattice sites, f&,,,=14500. The dashed curves

: . . . . show the initial kink profile. Simulation parameters a® C,
= = > - :
Vo=X(t=0)>0, which induces the following particle ve — 208, X(t=0)=1500, Vo= X(t=0)= y208. (b) C,=0, X(t=0)

I90|t|es: Qn=Vofnx+0an(0), that we have approximated by =1500.5, Vo= /208. () C,=208, X(t=0)=1500, V,=0.5. (d)
Qn=Vofnx, as we do not have thg,(0)’s. Although this C,=0, X(t=0)=1500.5,V,=0.5. (¢) and (f) show the instanta-
approximation is valid when discreteness effects are neglineous Poynting flux evaluated at site 1000, during the dynamics
gible, such an initial condition acts as a source of perturbain (c) and(d), respectively.

tions which excites the whole frequency spectrum. Figures 3

lattice spacings. As can be seen in Figa)3 when C;  waves at frequency,. Consequently the sites located far

=208, a strong phonon radiation occurs in the backwargyyay from the CK are not perturbed by the CK motion when
direction of the moving CK, due to direct resonance of thec, =0 [see Fig. &)].

internal modes of the compacton with phonon modes, as we
mentioned above. This radiative process alters the compact _ o
support of the CK and causes a small decrease of its velocity. B. Interactions between compactonlike kinks

WhenC,=0 the phonons are created at frequeiagy, but The problem of interactions between CK's was briefly
these phonons cannot propagate owing to their zero grougyamined by Dusuest al.[7], who reported that the head-on
velocity [see Fig. 8)]. For largeV, andC,=0, the effects  cqjiision between compactons traveling at a specific velocity
of the initial perturbations are significantly enhanced, whichis inelastic, leading to kinks after the collision. This result
causes a continual decrease of the veloXitf). But we see means that the two colliding CK’s can survive a collision
in Figs. 3c), 3(d), 3(e), and 3f) that for a small velocity/, through a conversion into standard kink structuf@g In
the perturbations induced by the launching conditions aréact, by carefully analyzing the collision process, we show
significantly reduced, as well as the resulting radiative pro-below that CK’s do not survive a head-on collision whatever
cess. Nevertheless, the Poynting flux evaluated at thensite are their incoming velocities, in contrast to standard kinks
=1000 shows that although the radiation is small it is notwhich are known to survive collisions in some ranges of
zero forC,#0 [see Fig. 8)]. Note that the discrete defini- incoming velocities. In this context, it is worth recalling that
tion of the Poynting fluxSis [2] the interaction between standard kinks have been intensively
investigated13—17. It was reported in most of these studies
S =[Qrs(1) - O (t)]Qn(t+At)_Qn(t) (13  that there exist some ranges of initial kink velocities for
' n+1 n At ' which the collisions end in reflection, and that these reflec-
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V01=—V02=0.05 L =50

sl (@
(@]
= 4
X3
[3)
o S
1
LB 002 ®) i
s
Lo 001 ;
200 400 600 800 1000 1200 1400 1600 - :
SITE n e !
0 pd
FIG. 4. Plot illustrating the initial profile of the lattice with a 0 50T(1ME1??2rb lggg 2000
static compactonl(c=500) and an anticompactoh ¢ =500) be- )
fore the beginning of the collision process. N (0] t=2000
k=3
tion regions alternate with regions of incoming velocities for o ]
which the collisions end in a bound pair of kink-antikink. > <
Moreover, an outstanding result of these studies is the dem- 1
onstration that the excitation of the internal mode of the kink (d 1=2078
during the collision(when this mode existsgives rise to 0
physical phenomena which determine the type of entities o 05
which emerge from the collision process. For example, '
Campbellet al.[13], who studied kink-antikink collisions in 1
classical kink-bearing systems, observed from simulations 100 300

200
that there exist some particular ranges of incoming velocities SITE n

for which _th_g CO”'d'_n_g kinks form a te'_“POfafy_ bound PaIt kG, 5. plot showing the collision process of a compacton trav-
after the initial collision. During this first collision, some eling at velocityVy;=0.05 (Lc=50) and an anticompacton travel-
energy of translation from each kink is transferred to theiring ‘5t velocity V= — V4, (Lc=50). (a) Time evolution of the
internal modes, the translation energy thereby being reduceghrmalized separation distance between the center-of-masses of the
sufficiently such that the colliding kinks form a temporary two compactons(b) Time evolution of the interaction energgc)
bound state. While in this bound state, they collide a secondystem profile at timet=2000. (d) System profile at timet

time, permitting a sufficient amount of energy which has=207s.

been transferred to the internal modes to be transferred back

to the translation mode of each kink, thus allowing them totion between the distance between the center-of-masses of
become again an unbound pair and separate to infinitthe two CK’s,X,—X;, and the effective separation distance
Therefore, the question arises as to whether or not the abowehich is

mentioned phenomena may occur in CK-bearing systems. To

answer this question we have carried out numerical simula- ~ Der= (Xa—Lc/2) = (X1 +Lc/2)= X=X, —Lc. (15

tions of collisions between compactons, which will be pre-
sented below, by taking an extreme care of the sensitivity o
the compacton dynamics to the approximate nature of th
initial velocities of the particlesas we already mentioned in ) i s ! R .
the previous sectignin this respect, it is useful to carefully our simulations of collisions between CK'’s, the initial posi-

monitor a characteristic parameter which can serve as a meﬁgnﬁ (;]f the C'”_‘"S’Xl(t:fo).lfind Xﬁ(t=0), were chosen
sure of the quality of launching conditions. A simple param-SUch thatDeq(0)=200, to facilitate the comparison between

eter (criterion that can be used is the interaction energy of adifferent cases. Figures(®, S(b), 5(c), and §d) show the

pair of CK’s. The interaction energy of two colliding entities collision process ,Of a CI{WiFh. I.‘C:50’ X.l(t:(_)): 50, in a
at a given time.E,,, may be defined as the potential energy 349 particle lattice, and initial velocity/,,=0.05 and

of the system timeé, measured from the potential energy of a 2Nti-CK [with Lc=50, X5(t=0)=300, and initial velocity
system of two noninteracting compactois,: Vo= —0.05], represented in solid curves. As Fig(ab
shows, as soon as the two compactons are launched, the

Ein=|Ep— Epol/Epo- (14)  separation distance between their c.m.’s continually de-
creases without inducing a change in the interaction energy
[see Fig. ®)], which remains to zero until the timé
Thus, if the launching conditions are perfectly controlled,=2000. At this time, we observe in Fig(& that X,— X,
then this interaction energy will remain strictly at zero until =L, thus indicating that the two compactons come into
the two CK’s come into contact. On the other hand, as illus-contact in a way similar to the contact between two hard
trated in Fig. 4, it is important to make here a clear distinc-sphereqsee Fig. &c)]. Here lies a fundamental difference

}n principle, if X,—X;>L¢, then two compactons will not
teract. They will begin to interact as soon Xg— X, will
ecome less or equal lo: (i.e., as soon ab¢4<0). In all
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between compactons and standard kinks. The dotted curve Vo,==V,=10 L =50 Vi, ==Y,=10 L =500
in Figs. 5a) and gb), which illustrate the interaction of a (at) (a2)
pair of ®-four kinks having the same slope and same initial 5 14
velocities as those of the compactons, demonstrate that thel 4 1.2
interaction betweer-four kinks begins much earliert (  x~ 4 1
~1436) than in the case of compactohs £000). Note that >I<C\l
the value ofC, for which the®-four kink and the CK have >~ 2 08
the same slope@x = B¢) is given by 1 0.6
(b2)
wo o 02 0.2
=—/ =%
=7 Voo (18 %o 0.15 0.15
[=R
This ®-four collision process ends in a bound state not rep- ', 01 01
resented in Figs. 5. On the other hand, the collision betweer® 0.05 0.05
CK’s also ends in an unstable bound state, in which the 0 0
newly formed entity executes an unstable breathing motion, 0 20 40 0 " 20 40
which progressively destroys the compact support of the en- TIME t {arb. units} TIME t [arb. units)
ergy localizationsee Fig. &d)]. 4| ey . t=11.8 1| (€2)
To check the behavior of CK’s during collisions, we have HAE
carried out, in a systematic manner, numerical simulations in _c
a wide range of initial velocities including low and high 0 0
velocities. It comes out from those simulations tballisions i[>\ t=10 - o=
between the compactons that travel at low incoming veloci- BV, ey
ties always end in a bound stafsuch as in Figs. b The o| (d2) t=3
main results for high incoming velocities are summarized in -0.2
Fig. 6. Figures 1), 6(bl1), 6(cl), and &dl), which show o -04
the collision process of two compactons with initial veloci- -06
ties +10 and the same width.= 50, would indicate that the e
collision ends in reflection. This type of collision corre- 00 200 ao B o 1000 1500 000 2500

sponds to the situation that was considered in R&fand SITE n :

was referred to as an inelastic collision. In fact, a careful

examination of the system’s profile at the very beginning of FIG. 6. Plot showing the collision process of a compacton trav-
the collision reveals quite clearly that the two colliding enti- €ling at velocityV,= 10 and an anticompacton traveling at velocity
ties are not compactons in the strict sefisee Fig. 6c1)]. Vo= —Vy,. Time evolution of the normalized separation distance
Indeed, a small but non-negligible part of the energy that wagetween the center-of-masses of the two compactonsafrl
initially strictly localized within the compactons ultimately - >0 and(@d L¢=500. Time evolution of the interaction energy

. : for (bl) Lc=50 and(b2) L-=500. System profile at timécl) t
finds itself away from the support of the two compactons, in _ 10 (dotted curve andt—11.8 (solid curve for L—50 and(b2)

the form of strong noise. The presence of this noise is due tgt fimest=10 for L.=500. (d1) System profile at timé=39 for
the difficulty of perfectly controlling the launching condi- 1) Lo=50 and(d2) Lo—500

tions of the compactons, as a result of the approximation o%c ¢ c '

neglecting the effects of the static dressigg(0)=0] inthe  havior, one must be aware of the fact that the reflection back
initial velocities on the particles. Consequently, as one startef two colliding entities requires that most of the energy lost
with highly accurate initial conditions but which are not the by the c.m. mode in the beginning of the collision is subse-
exact solution for the system, the initial conditions behave aguently restored. In thé-four kink system, in which only a

a source of noise which is subsequently amplified in timesingle internal mode exists, a direct energy exchange process
However, as we already mentioned in Sec. IV A, the effectoccurs between the c.m. mode and the internal mode, thus
of the static dressing can be minimized by just minimizingallowing reflection back of the kinks. Now, in the compacton
the discreteness effects, or equivalently, by increasing thbearing system, there exist a large number of internal modes
width of the compacton. Figures(é®), 6(b2), 6(c2), and which are excited during the collision. Then, the energy-
6(d2), which show the collision process of two compactonsexchange processes occur in one part between the internal
which are launched with the same initial velocities as in Figsmodes, and in the other part between the internal modes and
6(al), 6(b1), 6(cl), and &d1) but with a much larger width, the c.m. mode. In this situation, the reflection back of two
L.=500, reveal that the collision between compactons withcolliding compactons would require that most of the internal
incoming velocities=10 ends in fact in an unstable bound modes transfer synchronously their energies to the transla-
state. In general, we have found out the fundamental resution mode. It is clear that this requirement is unlikely to
that collisions between compactons never end in reflectioroccur in a system which possesses a large number of internal
for any incoming velocities, including the cases where twomodes with quite different frequencies: hence an unstable
compactons are launched with different velocities, and théound state after the collision. On the other hand, it is worth
case of collisions of compactons with different widths. Thus,reemphasizing that compactons can transform into kinks in
all the translation energy of compactons is transferred tahe presence of strong noise, thus recovering the ability to
their internal modes during the collision. To explain this be-execute a collision with reflection, as Figdd) shows. This
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conversion of a part of the compacton’s energy into noisdactor is related to the interactions between compactons: we
induces a small drop in the compacton’s velocity. Figurehave shown that in contrast to the pulse compactons intro-
6(c2) shows that in the absence of noise, g compactons duced by Rosenau and Hymdh,9] which survive colli-
(Lc=500) come into contact at time=10, at which the sions, our CK’s do not survive a head-on collision which
small compactonsl(-=50) are still clearly separated by ap- ends in an unstable bound state. Despite those limiting fac-
proximatelyD .4=27 lattice sitegas the dotted curve shows tors, the ability of a CK to execute a stable ballistic propa-
in Fig. 6(c1)]. The smallcompactons finally come into con- gation constitutes a potential advantage as regards applica-
tact after few while after thebig compactons, at timé¢  tions to signal processing. Without being too speculative we

=11.8[see the solid curve in Fig.(61)]. suggest that the use of CK'’s for data transmission purposes
would offer as main advantage, compared with usual kink
V. CONCLUSION structures[ 18], the absence of long range interactions be-

tween adjacent compactons. This property might be ex-

In conclusion, we have demonstrated that the ballistigyloited to increase the capacity of fiber links. In view of
propagation of a CK in nonlinear Klein-Gordon systems isthese remarkable features we believe that the efforts required
subject to three main limiting factors which may alter its to generate structures with a compact support in real physical
fundamental properties. In the regions of small nonlineaisystems deserve to be carried on.
coupling, discreteness effects give rise to a PN potential
which provides pinning sites for a CK. On the other hand, a
linear coupling gives rise to a phonon band which enters in ACKNOWLEDGMENTS
direct resonance with the internal modes of the CK, causing
radiation of energy away from the CK. These two limiting  Financial support from the Center National de la Recher-
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